
Dynamic Task Discovery in PaRSEC- A data-flow task-based
Runtime

Reazul Hoque, Thomas Herault, George Bosilca
The University of Tennessee

Knoxville, USA

Jack Dongarra
The University of Tennessee, Knoxville, USA

Oak Ridge National Laboratory, Oak Ridge, USA

University of Manchester, Manchester, UK

ABSTRACT

Successfully exploiting distributed collections of heterogeneous

many-cores architectures with complex memory hierarchy through

a portable programming model is a challenge for application de-

velopers. The literature is not short of proposals addressing this

problem, including many evolutionary solutions that seek to extend

the capabilities of current message passing paradigms with intra-

node features (MPI+X). A different, more revolutionary, solution

explores data-flow task-based runtime systems as a substitute to

both local and distributed data dependencies management. The solu-

tion explored in this paper, PaRSEC, is based on such a programming
paradigm, supported by a highly efficient task-based runtime. This

paper compares two programming paradigms present in PaRSEC,
Parameterized Task Graph (PTG) and Dynamic Task Discovery

(DTD) in terms of capabilities, overhead and potential benefits.

CCS CONCEPTS

• Theory of computation→ Distributed computing models;

KEYWORDS

PaRSEC, task-based runtime, data-flow, dynamic task-graph

ACM Reference Format:

Reazul Hoque, Thomas Herault, George Bosilca and Jack Dongarra. 2017.

Dynamic Task Discovery in PaRSEC- A data-flow task-based Runtime. In

ScalA17: 8th Workshop on Latest Advances in Scalable Algorithms for Large-

Scale Systems. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/

3148226.3148233

1 INTRODUCTION

The future of high performance computing is shifting towards

increasingly hybrid machines with many fat nodes with deep mem-

ory hierarchies and augmented with different types of accelerators

(GPUs, APUs etc.). After hitting the physical frequency barrier the

need to transition to an increase in parallelism in order to improve

performance becomes unquestionable. This trend demands finer

granularity of parallelism, but as long as we don’t have the tools to

automatically extract it from sequentially described source code,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ScalA17, November 12–17, 2017, Denver, CO, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5125-6/17/11. . . $15.00
https://doi.org/10.1145/3148226.3148233

the burden to expose the intrinsic algorithmic parallelism remains

on software developers. In a traditional programming environment,

software developers are required in addition of exposing parallelism

from the algorithms, to manage the resources and also decompose

and express their computations in a way that is portable among

shared and distributed memory machines with widely varying con-

figurations. To address the challenges of efficiently utilizing this

type of heterogeneous resources we need programming paradigms

that provide the ability to express parallelism in flexible and pro-

ductive manners. MPI and OpenMP are two of the most popular

programmingmodels for parallel applications. They both encourage

a practice of parallel programming for hero-programmers, where

the developers perform multiple jobs: express parallelism, manage

the computational resources and communications, and program-

matically provide the mapping between these two. These burdens

become heavier with the increase in core and node count, in het-

erogeneity of computational resources and application size.

At the opposite of the spectrum, task based runtime systems

have become popular in tackling such challenges and making it

easier to write parallel HPC applications. Runtimes relieve the users

from managing low-level resources and gives them the opportunity

to focus on writing parallel applications by describing the potential

parallelism in a way that is comprehensible by the runtime. Any

task-based runtime expects the users to express their computations

and the data on which the computations will be performed, in

a way where computations become entities (aka. tasks) and the

data flowing among them are the dependencies. Runtimes then

create a complete, or in some cases partial, directed acyclic graph

(DAG) of tasks based on these dependencies to figure out a correct

execution. Thus, the major challenge of using a runtime is not only

on the capabilities of the runtime, but also on the expressivity of the

language or API the runtime provides for expressing the task-graph.

In this paper we propose a dynamic feature of one such runtime:

Parallel Runtime Scheduling and Execution Controller (PaRSEC) and
compare two different methods of expressing parallel computation

in PaRSEC. PaRSEC has been previously proposed as a runtime for
heterogeneous architecture where users would use a parameterized

expression of task dependencies with PaRSEC implicitly inferring
the communication between nodes and the accelerators. This pro-

gramming model is called Parameterized Task Graph (PTG) [12]. In

this paradigm, users provide a concise description of all data flow,

the tasks that are the source of such data and also those that are

the destination. This creates a compressed algebraic representation

of the task graph, which is then transformed into C code using a

pre-compiler. Users need to know all the data-flow of all the types

of task in this model, but data-dependent algorithms are possible.

ScalA17, November 12–17, 2017, Denver, CO, USA R. Hoque et al.

We propose to augment the capabilities of the PaRSEC runtime
with another task-based programming paradigm, Dynamic Task

Discovery (DTD), to provide an alternative way to express task

dependency in PaRSEC that achieves a similar purpose, hopefully
with comparable performance. Using this new paradigm users can

write sequential constructs (ifs, loops, etc.) to insert task in PaRSEC
instead of expressing them in a parameterized manner. Each task

is expressed to the runtime with the data it will use and the mode

of usage, based on which dependencies are created. This mode is

somewhat similar to the task directive in OpenMP, in the sense
that dependencies will be automatically computed by the runtime,

out of data pointers used by the tasks. However, unlike OpenMP,

exposing the data as independent entities instead of mere hash

keys opens the opportunity to derive distributed version of the

algorithms in a simple way. The data movement among the nodes

in a distributed system become completely implicit in this paradigm.

A similar programming paradigm has been previously proposed by

other runtimes such as QUARK[20] and StarPU[4]. In this paper:

• We propose an alternative way to express dependency in PaRSEC,
that blends into the runtime and interoperates with all the other

PaRSEC programming paradigms;
• We describe the API for inserting task that allow online dis-

tributed building of the dependency DAG, and highlight how

dependencies between tasks are built and maintained;

• We discuss the optimizations required to minimize the overhead

of building dynamic task-graph dynamically during runtime;

• We model the overhead of dynamically building a task-graph

compared to the PTG’s compressed representation using a math-

ematical model and validate the model using experimental data;

• We present the performance of dense linear algebra algorithms

in shared and distributed memory systems. We compare the

results with several other runtimes (where similar capabilities

are available).

The organization of the rest of the paper is as follows: Section 2

gives an overview of the state-of-the-art of task-based runtimes.

Section 3 describes the proposed programming model, the required

optimizations and a look at the theoretical overhead. Section 4

explains the various experiments performed and their results on

shared and distributed memory. Finally, Section 5 summarizes the

programming model and its performance with some discussion

about future work.

2 RELATEDWORK

In this context we refer to task-based runtimes that are designed

specifically to handle fine granularities tasks below the millisecond.

Workflow systems where the usual granularities are in the order of

tens of seconds, share some similitudes with task-based runtime but

are outside the scope of this paper. There are multiple task-based

runtime systems that allow developers to express their application

in a way that takes away the burden of mapping computational

tasks to the underlying hardware. Some of the recent task-based

runtimes such as Legion [5], StarPU [4], QUARK [20], HPX [16],

OCR [15], OmpSs[10], SuperGlue[18], OpenMP [2] and PaRSEC [8]

abstract the available resources to simplify the process of writing

massive parallel scientific application.

Legion describes logical regions of data and uses those regions to

express the data flow and dependencies between tasks. It uses a low

level runtime, Realm[19], to schedule and execute tasks and uses

GASNet as the underlying communication layer. It supports het-

erogeneous architecture and works in both shared and distributed

memory systems.

QUARK and StarPU each lets users submit tasks using their API

and dynamically builds the task-graph. QUARK does not support

heterogeneous architecture and works only in shared memory sys-

tems whereas StarPU has support for heterogeneous systems, and

a nascent support for distributed memory. Both runtimes manage

threading internally and has their own scheduler.

Open Community Runtime (OCR) currently supports homoge-

neous architecture in distributed systems and uses Intel Threading

Building Blocks to manage threading. It is still in very early devel-

opment stage.

OmpSs uses Nanos++ runtime to manage tasks and follows a

master-slave model. It allows nesting of tasks in individual node to

relieve the master, however the master-slave model may suffer from

scalability issues as the scale of the underlying execution platform

increases or the scale of the application.

SuperGlue employs data versioning to represent dependencies.

This means that a task depends on data rather than on another task

and as of now it supports shared memory systems.

OpenMP introduced depend clause in standard 4.0 which allows

users to express the computation in task form which indicates the

popularity and potential of task based runtime systems. OpenMP is

widely used and supports homogeneous shared memory systems,

but extensions in the heterogeneous environments exists and are

currently investigated by the OpenMP standardization body.

The common point between all these runtimes is the fact that

they all use some codified description of dependencies to build

the task graph during execution, and then distribute the work on

the available resources. Their capability of using heterogeneous

computing resources varies, as well as what is the definition of a task

(in the sense of what types of operations are allowed to be executed).

The proposed extension to PaRSEC, DTD, while looking similar
to many of them, differs in many subtle ways, providing more

opportunities for efficient scheduling over heterogeneous resources,

and overlapping between communications and computations.

3 PaRSEC AND DYNAMIC TASK DISCOVERY

This section describes PaRSEC runtime and introduces a new fea-

ture - Dynamic Task Discovery. We discuss the advantages and

disadvantages of the existing and proposed programming para-

digm and explain the optimizations required to reach comparable

performance with the new interface.

3.1 PaRSEC
PaRSEC [8] is a task-based runtime for distributed heterogeneous
architectures, capable of tracking (and when necessary moving)

data between different memory (in and between nodes) and sched-

uling tasks on heterogeneous resources. It employs several Domain

Specific Languages (DSL) to provide flexible domain specific pro-

gramming models to application developers. These DSLs create

Dynamic Task Discovery in PaRSEC- A data-flow task-based Runtime ScalA17, November 12–17, 2017, Denver, CO, USA

a data-flow model to create dependencies between tasks and ex-

ploits the available parallelism present in application. PaRSEC is
rich with many features aimed at helping developers express their

application to the runtime correctly and efficiently. Certainly the

most exposed DSL, PTG, allow users to use a parameterized task

graph (PTG) [13] known as Job Data Flow (JDF) which handles the

dependencies between tasks. To enhance the productivity of the

application developers, PaRSEC implicitly infers all the communica-
tion from the expression of the tasks, supporting one-to-many and

many-to-many types of communications. The runtime has been

designed to excel in distributed systems and has been extensively

tested for performance yielding excellent results [13] in comparison

to widely used library, ScaLAPACK [6], or currently state-of-the-art

computational chemistry applications [14, 17].

Multiple components constitute PaRSEC runtime: programming
interfaces (DSL), schedulers, communication engines and data inter-

faces. The runtime uses a modular component architecture, allow-

ing different modules to be selected, providing different capabilities

to different instances of the runtime (such as scheduling policies,

or support for heterogeneity). A clear API for these modules allows

interested developers or users to implement their own, application

specific, policies. The different DSL share the same runtime, data

representation, communication engine, scheduler, allowing them

to seamlessly inter-operate in the context of the same application.

Traditionally, application developers have a propensity to write

sequential code. PaRSEC, with the help of a pre-compiler, transforms
some form of sequential code to PTG, with the limitation that the

sequential code must be affine [9]. In the remaining of this paper,

we propose a different PaRSEC programming model, Dynamic Task
Discovery, that removes the need of a pre-compiler, and therefore

abolish the loop-affine limitation.

3.2 Dynamic Task Discovery in PaRSEC
Dynamic Task Discovery (DTD) is a new PaRSEC DSL (or in this
particular instance low-level task interface) proposed in this work.

This interface allows users to write sequential-looking code, in-

cluding conditionals, for loops, code blocks, to insert task using

PaRSECs API. There are three main concepts to express a task graph
in PaRSEC using DTD: task, dependency and data. A task is any

kind of computation that will not block, data are pieces of memory

on which the computations will be performed and dependencies

are the ordering relationship between tasks. To insert a task in

PaRSEC, users indicate the data and the mode of operation that will
be performed on the data by a task (read, write or read/write). De-

pendencies between tasks are created based on the operation-type

on the data, a task performing a write before a task performing a

read on the same data will create a read-after-write (RAW) depen-

dency between the write-task and read-task, such that the read-task

will only execute after the write-task is completed. The sequential

expression guarantees the correct ordering of tasks. In distributed

memory systems all the participating processes need to have a con-

sistent view of the DAG for DTD to maintain the correct sequential

order of tasks and this require the whole DAG to be discovered by

all the processes.

Applications operating in distributed memory have data dis-

tributed among participant processes. PaRSEC has its own data

description interface that allows users to express how the data

should be distributed (block-cyclic, 2d-block-cyclic, completely ir-

regular etc). PaRSEC then abstracts the distribution information in
a consistent global structure called data-collection. Each piece of

data is represented by a data_t structure that can hold references

of multiple data-copy(s) in circulation and each data_t in turn will

belong to a certain data-collection. PaRSEC manages the data_t and
data-copy internally. Both the DSL in PaRSEC shares the same data
interface.

To illustrate PaRSEC’s API to insert taskwe provide in Listing 1 an
example of tiled Cholesky factorization, composed of three nested

levels of affine loops, and contains four operations (tasks), namely:

POTRF, TRSM, HERK and GEMM.

1 f o r (k = 0 ; k < t o t a l ; k++) {

2 parsec_insert_task (POTRF ,

3 t i l e _ o f (A , k , k) , INOUT | AFFINITY) ;

4 f o r (m = k +1 ; m < t o t a l ; m++)

5 parsec_insert_task (TRSM ,

6 t i l e _ o f (A , k , k) , INPUT ,

7 t i l e _ o f (A , m, k) , INOUT | AFFINITY) ;

8 f o r (m = k +1 ; m < t o t a l ; m++) {

9 parsec_insert_task (HERK ,

10 t i l e _ o f (A , m, k) , INPUT ,

11 t i l e _ o f (A , m, m) , INOUT | AFFINITY) ;

12

13 f o r (n = m+1 ; n < t o t a l ; n++)

14 parsec_insert_task (GEMM,

15 t i l e _ o f (A , n , k) , INPUT ,

16 t i l e _ o f (A , m, k) , INPUT ,

17 t i l e _ o f (A , n , m) , INOUT | AFFINITY) ;

18 }

19 }

Listing 1: Cholesky Factorization

Each operation takes a number of data as input and performs a

specific mathematical operations on the input data. Line 2 of list-

ing 1 shows the API to insert task in PaRSEC. Each data, the tasks
take as input, has an ’operation-type’ flag associated with it. The

operation-type flags currently supported are INPUT - specifying

the data is read-only, INOUT - the data will be read and written on

and OUTPUT - the task will write on the data. The AFFINITY flag

indicates the placement of the task in a distributed environment, on

the rank where the data corresponding to the AFFINITY flag resides,

e.g. line 3 of listing 1 shows that POTRF tasks will be placed in the

rank where data A(k, k) resides. Task placement in a distributed

environment depends on the initial data distribution. The DTD

interface builds a DAG of all the tasks inserted in the runtime de-

pending on the data and the way each task consumes and produces

them. All the communications required to carry out a deterministic

and coherent execution of any application are implicitly inferred,

depending on the affinity of the tasks that update and consume a

data. In a more general context, assuming Task 1 updates Data A

in rank 0 and has a successor Task B in rank 1, the necessary data

transfer from rank 0 to rank 1 is automatically inferred from the

dependency between the tasks and is completed asynchronously

by PaRSEC. This eliminates the cumbersome and error-prone re-
quirement of expressing explicit communication, and makes the

algorithm itself independent of the data distribution, with each

task instance affinity dependent. For the sake of understanding the

difference with the original PaRSEC programming model listing 2

ScalA17, November 12–17, 2017, Denver, CO, USA R. Hoque et al.

10000 20000 30000 40000 50000 60000 70000

Size(N)

500

1000

1500

2000

2500

3000

3500

G
fl
op
s

0

500

1000

1500

2000

2500

3000

3500

4000

M
em

or
y
u
se
d
in
ea
ch

n
o
d
e
(M

eg
ab
yt
es
)

Cholesky Factorization on 8 nodes Haswell, 20 cores each, Tile Size = 180

Window=4000

Window=2

Window=8000

Window=2000

Window=100000000

Figure 1: Performance and Memory-footprint

per node for different window size

POTRF

TRSM

HERK

GEMM

2

0

1

3 4 5

6

7

8

9

Node 1

2

0

1

4 5

6

7

8

9

1

6

Node 0

0

1

3 4

6

7

0

4

7

Stub DAG
entries for
remote tasks

Figure 2: Sample Trimmed DAG

10000 20000 30000 40000 50000 60000 70000

Size(N)

0

2000

4000

6000

8000

10000

M
em

or
y
u
se
d
in
ea
ch

n
o
d
e
(M

eg
ab
yt
es
)

Cholesky Factorization on 8 nodes Haswell, 20 cores each, Tile Size = 180

No Trimming

With Trimming

Figure 3: Memory-footprint in each node

with and without Trimming

shows a sample code for one of the task class, POTRF, using the

PTG interface of the same tiled Cholesky factorization used above

to illustrate the proposed interface.

1 POTRF(k)

2 k = 0 . . t o t a l / / Execu t i on space

3 : A(k , k) / / Task a f f i n i t y

4 RW T <− (k == 0) ? A(k , k) : T HERK(k−1 , k)

5 −> T TRSM(k+1 . . t o t a l , k)

6 −> A(k , k)

7 BODY { POTRF (. . .) ; } END

Listing 2: JDF of Cholesky Factorization

Line 2 of listing 2 defines the range of the parameter k, which in

turn defines how many tasks belonging to task class POTRF will

be there. Line 3, defines the task placement in a distributed envi-

ronment, where each POTRF (k) task will be placed where data A(k,

k) resides (equivalent to the AFFINITY flag described previously).

Line 4-6 specifies the parameterized data dependency of this task

class. Each POTRF task will consume and produce one data T. RW

on line 4 specifies that the data will be read and written by each

task of this task class. Arrow pointing to the left indicates input

dependency for that data and arrow pointing right indicates output

dependency. Line 4-6, in words would read POTRF (k) will consume

data T in RW mode, where T will either come from memory(A(k,

k)) or from task HERK(k-1, k) depending on parameter k and the

data produced will be consumed by a bunch of tasks belonging to

the same task class TRSM ranging from (k+1 .. total, k) and also

that POTRF (k) will be the final writer of data A(k, k) (line 6).

3.2.1 Challenges and Optimization. Dynamic Task Discovery

has the advantage of being able to dynamically discover tasks,

but poses challenges that need to be tackled in order to obtain

scalability and performance. Some of the features like, untying task

insertion from a specific thread, independent task insertion from

multiple threads, DAG trimming in distributed environment are

novel to DTD. We list some of those challenges, including the ones

mentioned earlier, and discuss how we address them.

Unrolling the DAG. The whole DAG of tasks needs to be un-

rolled in memory in order to progress and schedule them in DTD.

Saving the task graph in memory is defined as unrolling. Looking

ahead in the task-graph gives the runtime opportunity to improve

the scheduling decisions and the occupancy of the computational

units, and in extreme cases might result in unrolling the whole DAG.

The other paradigm, PTG, does not incur this overhead. PTG does

not need to unroll a DAG as the whole DAG has been compressed by

the parameterized expression given by the user. In case of DTD, the

memory requirement for the DAG is O(|V | + |E |) where |V | is the

number of tasks discovered, and |E | the number of dependencies.
In PTG, the memory requirement is O(|TC | + |DC |), where |TC | is
the number of types of task, and |DC | the number of data each type
of task refers. Building a DAG is an operation that is at least O(N)

where N is the size of the representation. This theoretically puts

PTG ahead in terms of performance and less memory overhead. The

memory requirement of unrolling the whole DAG can limit the size

of the problem we want to solve using DTD.We solve this challenge

by implementing a throttling mechanism for task insertion in the

system. It works like a sliding window of DAG that user can control

with environment variables read by PaRSEC. This bounds the mem-
ory usage of any problem to the size of the window. DTD reuses the

task structure of completed tasks to keep the memory footprint at

a minimum. Figure 1 shows the performance of Cholesky factoriza-

tion with different window sizes and the memory footprint of the

application at those window sizes. We can see, with a bounded slid-

ing window we achieve the same performance with substantially

less memory overhead. The window size is a performance tuning

parameter and it dictates how many tasks the task-inserting thread

will insert before joining the other threads in doing useful work. So,

a window of 2k means the responsible thread will insert 2k tasks

(local tasks in case of distributed memory) before it stops to join

the others. If the window size is too small not enough tasks are

discovered which results in less parallel work and bad performance.

If the window size is too large, more memory is used to store the

DAG and this results in large memory overhead. Another impor-

tant variable is the threshold parameter, which dictates the lower

watermark after which the responsible thread will start inserting

task again. For the experiment we show in Figure 1, the threshold is

1 for window size 100 million and half the corresponding window

size for the rest. Setting a small threshold will result in starvation

as the runtime will be delayed in inserting tasks. We see in Figure 1

that window size of 2 shows dramatic performance loss with less

memory overhead, while a window size of 100 million has the same

performance as a more reasonable window size of 4k or 8k with

significantly higher memory overhead. At window size 4k and 8k

Dynamic Task Discovery in PaRSEC- A data-flow task-based Runtime ScalA17, November 12–17, 2017, Denver, CO, USA

we see as good a performance as we would if the runtime had a

large look ahead and observe much better performance compared

to performance of small window sizes like 2k or smaller. We also

observe the memory overhead at those window sizes to be almost

similar to storing a very small DAG like we would at window size 2.

At window size 100 million we are storing the whole DAG for each

process in memory and we see for large size (70k) that occupies

almost a gigabyte per process more than storing window (4k, 8k)

of DAG.

Untying task insertion from specific thread. User can select

to insert task using a specific thread, where the thread blocks after

a certain number of task is inserted to maintain a sliding window.

This results in having only one specific thread inserting task and

creates dependency on that single thread for task insertion (poor

performance in this case) and reduces parallelism. Alternatively,

the user can insert a task that will generate other tasks and untie

the tasks insertion from a specific thread. In the latter case PaRSEC
provides mechanism for a task to de-schedule itself without com-

pletion. Tasks can return a special ’schedule-me-later’ flag to the

runtime signaling that the task is not complete and needs to be

rescheduled later. The untied scheme eliminates performance degra-

dation in the case of the responsible thread being de-scheduled by

the operating system, and permits a sliding window of tasks, as

described in the previous section. It also enables users to generate

independent tasks simultaneously and provides a mechanism to

insert task recursively in DTD.

DAG Trimming. In distributed environment DTD improves its

memory footprint by trimming the DAG.We keep track of all the lo-

cal tasks and all the remote tasks that are either a direct successor or

a predecessor of a local task and trim the rest of the DAG. Trimming

the DAG is not as simple as storing a task if it is local and ignoring it

if it is not, as we have to keep related remote tasks. To achieve this,

we need to keep track of all the data, local or remote, that has been

discovered by the runtime so far to identify the remote tasks that

are related to local ones and then decide on keeping or ignoring

them. Figure 2 shows a sample trimmed DAG in each node in a

distributed run. We can see the advantage of trimming the DAG

of remote not-related tasks in Figure 2. We are successfully able to

restrict the memory overhead of large distributed problems using

this technique. Figure 3 shows the memory usage of distributed

Cholesky factorization on 8 nodes in double precision with and

without trimming. Factorization of a large matrix involves a lot

more tasks compared to smaller one and we see by trimming the

DAG and reusing the task structures we require almost five times

less memory in the case of size 70000.

Communication. Communication in DTD is accomplished us-

ing the communication engine present in PaRSEC. In DTD paradigm

each individual process in a distributed environment will discover

the entire task-graph independently and at its own speed. This

results in situations where processes are out of sync, and process

Pi is trying to send a message about a task T (k) to process Pj , and
Pj did not yet discover task T (k). The task is then known, but not
yet locally discovered, and in order to minimize the local impact on

memory usage we delay the communication between process Pi
and process Pj until process Pj discovers T (k), and knows how the

data should be fetched. This situation is unique in DTD and adds

more overhead in the communication side compared to PTG.

Moreover, as we discover that due to the tasks dependencies,

the same data version would need to be transfered multiple time

between 2 processes, we optimize the number of communication

necessary by marking the data accordingly with the local knowl-

edge, and avoiding to send it more than once. This avoids redundant

communications. We have also carefully engineered the communi-

cation engine, to maximize the memory reuse by recycling buffers

allocated for remote data, reducing the number of calls to costly

memory allocation/deallocation and pinning/unpinning functions.

A local copy of a remote data becomes reusable once all the local

uses of the data version are completed and the local process has

also discovered the next writer.

3.3 Overhead of DTD compared to PTG

In this section we present a mathematical model to represent the

overhead present in Dynamic Task Discovery compared to Parame-

terized Task Graph. We start by defining the notations to represent

the different performance tuning parameters of any task based

runtime. Let’s define N as the total number of tasks, CT as the

cost/duration of each task, P as total number of process and n as
the number of actual cores in each process. Let us also define CD
as the cost/duration of discovering each task during execution and

CR as the cost/duration of building the DAG/relationship. Given

these definitions we can very simply express the overall execution

time of a PTG run as :

TPTG =
N ×CT
P × n

(1)

and DTD’s overall time as:

TDTD =
N ×CT
P × n

+ N ×CD +
N ×CR

P
(2)

Here, we consider both PTG and DTD to have the same schedul-

ing overhead as they share the scheduler and the communication

engine, and do not include that in the total time. For PTG we show

the total useful computation time as the total time. DTD’s total time

include the computation time plus the time to discover and build

the task graph. Having the advantage of the compressed represen-

tation of the task-graph, PTG does not incur this cost. The total

overhead of DTD paradigm is the time needed to discover N tasks

in all P processes and the linking of tasks that are dependent. Since,
all the processes will have to discover all the tasks to maintain the

same coherent view of any DAG, the cost is N×CD×P
P

= N × CD .
We assume a perfectly balanced task-graph where each process is

concurrently building N
P
part of the DAG and hence the total DAG

building cost is N×CR
P

.

To validate the overhead of DTD, we performed Cholesky factor-

ization in distributed setting of 8 nodes. By tuning the tile size, we

can vary the cost of each task, CT , and the total number of tasks
in the system, N , two principal overhead tuning parameters. In
Figure 4, we see the performance of both the paradigm drops as we

move to finer granularity resulting in smaller tasks. Important thing

to notice is the drop of DTD is significantly higher than PTG. Alter-

ing the matrix size varies one of the tuning parameters, N , while
the other two: P andCT are constant. By looking at Equation 2, we

ScalA17, November 12–17, 2017, Denver, CO, USA R. Hoque et al.

50k/59.3 70k/162.810k/0.5 30k/12.8 40k/30.4 60k/102.520k/3.8 80k/244.1

Size(N)/No. of Tasks(millions), Tile size: 128

1500

2000

2500

3000

3500

4000

50k/3.8 70k/10.410k/0.030 30k/0.8 40k/2.0 60k/6.520k/0.2 80k/15.6
Size(N)/No. of Tasks(millions), Tile size: 320

Cholesky(double) on Haswell, 8 nodes, 20 cores

PaRSEC-DTD, Tile size: 320

PaRSEC-DTD, 128, Execution Only

PaRSEC-DTD, Tile size: 128

PaRSEC-PTG, Tile size: 128

PaRSEC-PTG, Tile size: 320

G
fl
op
s

Figure 4: Overhead test in PaRSEC

can identify the cases where the overhead of DTD paradigm will

be visible compared to PTG.

Let us start with the parameter N . For varying matrix sizes, the
performance of DTD and PTG are comparable in the case of tile size

320. Here, as we grow the matrix size, only N increases. We do not

see any performance drop in either case, as when N alone grows it

only increases the shared scheduling overhead and the ratio of cost

parameters in DTD remains constant in this case as P is fixed. As
we move from 320 to a lower tile size we see performance drop in

both PTG and DTD. We change two parameters as we lower the

tile size, the CT and N , we decrease the cost of each task and we
increase the number of tasks. In the previous example we see that

varying only N does not effect the performance when the other

parameters are constant, so we can attribute the performance drop

in this case to the decrease in CT . In Equation 2 as we decrease CT
the ratio CT

CD+CR
follows. This affects only DTD as this overhead is

not present in PTG. To validate this relationship we repeated the

same experiment for DTD, but this time we build the whole DAG

before and excluded this building time. We see that the performance

improves drastically and is only 4% lower than PTG.

From Equation 2 we can identify the cases where DTD will not

scale and perform well. If the ratio CT
CD+CR

is small the overhead

of discovering and building DAG will be significant. For large dis-

tributed execution involving numerous processes and billions of

task the middle part of Equation 2 (N ×CD) will be a bottleneck.
All processes needs to at least discover all the tasks in the DAG

for correctness and for large P the computation time as well as the

partial DAG building time (last part of Equation 2) will be lower, but

as the middle part is not a function of P , it will not be affected at all.
Given, N remains constant and we keep adding P up to the point
where there is enough parallel work for all the processes, DTD will

stop performing because of the bottleneck of discovering all the

tasks. Given, N and P both increases, the discovery part will grow
much faster(depending on P) than the computation time, and will
eventually not perform. The one possible solution to this problem

is pruning the task-graph, where user takes more responsibility

and does not submit all the tasks in all processes, which in ideal

case will make N ×CD go down to N×CD
P

.

Table 1: Summary of Softwares used

Software Version Software Version

Compiler GCC 5.1 BLAS MKL

StarPU 1.2.0 Chameleon 0.9.1

Quark 0.9.0 PaRSEC 2.0 rc

Open MPI 2.1

4 EXPERIMENTS AND PERFORMANCE

In this section we describe the different experiments we have per-

formed to assess the performance of DTD and the environment

and parameters of each experiment. We present the performance

of each experiment and discuss the outcome.

4.1 Experiment Details

Dense Linear Algebra Routines. We test tiled Cholesky and

QR factorization (double precision) on both shared and distributed

memory system and compare with other runtimes. QR factorization

uses multiple data where as Cholesky uses one and both factor-

izations create DAGs with multiple task types. These tests should

allow us to assess the performance of both the interfaces in PaRSEC
and the other runtimes. It is important to note that the tile size in

these tiled algorithms determine the total number of tasks that will

be generated and that in turn determines the stress on the runtime.

With all these experiments the target is not to show the percentage

of machine peak we are reaching but rather how the runtimes are

performing compared to each other given the same stress. PTG [13]

has already shown to scale better than the alternatives, so achieving

comparable results to PTG with obvious more runtime-overhead

should be an indication of good performance.

We have used Chameleon to test all the runtime systems other

than PTG in sharedmemory. Chameleon [3] provides the PLASMA [11]

library with an option to choose the underlying runtime. Currently

supported runtimes are QUARK, StarPU and PaRSEC. For distributed
systemwe have used DPLASMA [7] for PaRSEC and ScaLAPACK [6].
Runtimes and libraries compared in the dense linear algebra rou-

tines for shared memory are QUARK [20] and StarPU [4] and for

distributed memory, ScaLAPACK [6]. For PaRSEC we have used the
local flat queue (LFQ) scheduler and for StarPU we have used local

work stealing (LWS) scheduler. GCC 5.1 was used to compile all the

libraries and OpenMPI 2.1 was used as the communication library.

For shared memory tests we have used Intel(R) Xeon(R) CPU

E5-2650 v3 @ 2.30GHz machine with 20 physical cores. We also

report result of Cholesky on Intel(R) Xeon Phi(TM) CPU 7250 @

1.40GHz with 68 physical cores.

For distributed memory system we have used TACC [1] cluster

- Stampede. Each node is equipped with 2 8-core Xeon E5 proces-

sors and 32GB of memory and connected with Infiniband FDR

interconnect.

4.2 Performance Evaluation

Shared Memory. We present result of Cholesky factorization

on two architectures, Intel Haswell and Intel KNL. Figure 5 shows

the performance on Haswell, where the peak performance of the

GEMM kernel is 645 GFlops. The top plot shows the performance

of the runtime systems for a tile size of 320x320. At this size there is
a clear convergence in terms of performance between all runtimes,

Dynamic Task Discovery in PaRSEC- A data-flow task-based Runtime ScalA17, November 12–17, 2017, Denver, CO, USA

5000 10000 15000 20000 25000 30000
Size(N)

100

200

300

400

500

600
Overall performance at Tile size: 320, Haswell, 20 Cores

PaRSEC-DTD

StarPU

PaRSEC-PTG

PLASMA-QUARK

64 192 320 448 576
Tile size

0

150

300

450

0

150

300

450

QUARK

PaRSEC-PTG

PaRSEC-DTD

StarPU

G
fl
op
s

S
iz
e
1
4
k

S
iz
e
2
0
k

P
er
fo
rm
an
ce
in
va
ry
in
g
T
ile
S
iz
e

Figure 5: Performance of Cholesky factorization on

Haswell (shared memory)

5000 10000 15000 20000 25000 30000 35000 40000
Size(N)

200

400

600

800

1000

1200

Overall performance at Tile size: 320, KNL, 68 Cores

PaRSEC-DTD

StarPU

PaRSEC-PTG

PLASMA-QUARK

64 192 320 448 576
Tile size

0

300

600

900

1200

0

300

600

900

1200

QUARK

PaRSEC-PTG

PaRSEC-DTD

StarPU

G
fl
op
s

S
iz
e
1
5
k

S
iz
e
2
0
k

P
er
fo
rm
an
ce
in
va
ry
in
g
T
ile
S
iz
e

Figure 6: Performance of Cholesky factorization on

KNL (shared memory)

the computational intensity of the target kernel (matrix-matrix

multiplication) tolerate a lot of overheads in the runtimes. In the

bottom figure, we fix the size of the matrices (14k and 20k) and

investigate the impact of the tile size on the performance. For each

chosen matrix size we varied the tile size from 64 to 576 increment-

ing by 128 at each step. The results is that without modifying the

total amount of computations needed to solve the problem, we are

decreasing the granularity of each task and therefore increase the

number of tasks (for Cholesky there is a cube relationship), and as

a result we increase the task-management stress on the different

runtimes. We see that all runtime based on PaRSEC, PTG and DTD,

perform better for small tasks, certainly due to a more careful im-

plementation of the base runtime. In addition, PTG is favored by

the fact that it does not build a task-graph at runtime unlike the

others and as a result has a lower task management overhead.

Figure 6 shows the performance of Cholesky on KNL, where the

core count is 3 times higher and the frequency of each processor is

almost half of Haswell. The peak performance of GEMM kernel on

this machine is 2 TFlops. In the top plot we see that PTG and DTD

both perform similar at tile size 320 where StarPU does slightly

lower and QUARK seems to suffer a little. If instead of increasing

the problem size, we fix it and do a tile tuning experiment to assess

the behavior of the different runtimes under stress, a different pic-

ture emerges. Clearly, larger tile sizes (and directly tasks execution

duration) lead to similar results for all runtimes. However, when the

tile size decrease, we see a similar result to the Haswell experiment,

both PaRSEC DSL, PTG and DTD, outperform all the other runtimes.

For information at tile size of 64, PaRSEC DTD is 3x faster than the

other runtimes, where PTG is about 6x faster than DTD, due to it’s

efficient task handling, a smaller number of known tasks, and a

more streamlined scheduling.

Distributed Memory. We used a QR factorization on 128 nodes,

2048 cores, on Stampede, to perform a problem scaling test (the total

number of computing resource remains constant while the problem

size increases). Out of the 4 runtimes only 2 provide a distributedQR,

but we have added ScaLAPACK, which represent the current state-

of-art algorithm on this setup. Figure 7 show that for matrix size

of up to 120kx120k both PaRSEC DSL, PTG and DTD, outperform

ScaLAPACK by a significant factor (up to 3x for small matrices).
Once the problem size reaches saturation (280kx280k), ScaLAPACK
catches up with PaRSEC, and both asymptotically converge toward
the machine peak. These results show that, at least up this number

of processes, the QR performance of PTG and DTD are equivalent,

highlighting a similar scalability for both PaRSEC-DSL.
To further assess the scalability of DTD, we performed a weak

scaling test on Cholesky and QR varying the number of cores from

16 to 2304 cores. Here, the problem size is determined by the number

of process taking part in the execution while the workload per

process/node is kept constant. The workload per node for both

factorizations is kept constant at a matrix size of 20kx20k and the
final total size in both case was 240kx240k . The data was distributed
in a block-cyclic way across a PxQ processors grid. From 1 to 4

processes we see a drop in performance as communications will

introduce latencies. However, as P increases its impact on the ratio

of computation/communication becomes negligible, which is why

the performance stabilizes. The QR factorization is less impacted by

the process grid, and we observe good scalability for both PTG and

DTD. For Cholesky factorization DTD is 5% slower than PTG at 144

nodes. PTG is able to extract and realize collective communication

patterns, where DTD lack such capability due to the way the task

graph is discovered by different nodes (each process might have

discovered only a portion of the entire task graph).

5 CONCLUSION

In this paper, we presented a new task insertion extension for

PaRSEC, Dynamic TaskDiscovery, supporting shared and distributed
memory environments. We highlighted the differences with exist-

ing task insertion paradigms, described and implemented several

automatic runtime-level optimizations, and analyzed the new para-

digm’s performance using a set of widely-used dense linear algebra

algorithms. The result shows good scalability and comparable result

to PTG in most cases and, where comparable benchmarks exist,

consistently better performance compared to other runtime. We

also discussed the benefits and drawbacks of DTD programming

ScalA17, November 12–17, 2017, Denver, CO, USA R. Hoque et al.

200000 240000 28000040000 16000012000080000 200000 240000 28000040000 16000012000080000 200000 240000 28000040000 16000012000080000

Size(N)

10000

15000

20000

25000

G
fl
op
s

QR Factorization on Stampede, 2048 cores, Tile Size = 320, Block Size = 64

PaRSEC-PTG

PaRSEC-DTD

ScaLAPACK

Figure 7: QR factorization on 128 nodes (2048 cores)

1441 4 16 64 1441 4 16 64 1441 4 16 64 1441 4 16 64 1441 4 16 64 1441 4 16 64

No. of Nodes

175

200

225

250

275

300

325

350

G
fl
op
s/
N
o
d
e

Weak Scaling - DPOTRF and DGEQRF, (20k x 20k)/Node, Tile Size 320, up to 2304 Cores

Practical Peak DGEMM

DGEQRF PaRSEC-PTG

DGEQRF PaRSEC-DTD

DPOTRF PaRSEC-PTG

DPOTRF PaRSEC-DTD

Figure 8:Weak Scaling of Cholesky and QR, up to 2304 Cores

model compared to PTG. This feature opens up the opportunity

for application developers to build applications using multiple pro-

gramming API (currently DTD and PTG) over the same runtime,

merging in the same application multiple programming models

with complementary capabilities. It also highlights the opportu-

nity to develop specialized DSL over the PaRSEC runtime, without
making compromises regarding the performance of the resulting

applications.

ACKNOWLEDGMENTS

This research was supported by the Exascale Computing Project (17-

SC-20-SC), a collaborative effort of the U.S. Department of Energy

Office of Science and the National Nuclear Security Administration.

REFERENCES
[1] [n. d.]. TEXAS ADVANCED COMPUTING CENTER. ([n. d.]). https://www.tacc.

utexas.edu/
[2] 2013. OpenMP 4.0 Complete Specifications. (2013). http://www.openmp.org/

wp-content/uploads/OpenMP4.0.0.pdf
[3] Emmanuel Agullo, CÃľdric Augonnet, Jack Dongarra, Hatem Ltaief, Raymond

Namyst, Samuel Thibault, and Stanimire Tomov. 2012. A Hybridization Method-
ology for High-Performance Linear Algebra Software for GPUs. GPU Computing

Gems Jade Edition (2012), 473âĂŞ484. https://doi.org/10.1016/b978-0-12-385963-1.
00034-4

[4] Emmanuel Agullo, Olivier Aumage, Mathieu Faverge, Nathalie Furmento, Florent
Pruvost, Marc Sergent, and Samuel Thibault. 2014. Harnessing Supercomputers
with a Sequential Task-based Runtime System. 13, 9 (2014), 1–14.

[5] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. 2012. Legion:
Expressing locality and independence with logical regions. In International Con-
ference for High Performance Computing, Networking, Storage and Analysis, SC.
https://doi.org/10.1109/SC.2012.71

[6] L Blackford, J Choi, A Cleary, E D’Azevedo, J Demmel, I Dhillon, J Dongarra,
S Hammarling, G Henry, A Petitet, K Stanley, D Walker, and R Whaley. 1997.
ScaLAPACK Users’ Guide. Society for Industrial and Applied Mathematics. https:
//doi.org/10.1137/1.9780898719642

[7] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Azzam
Haidar, Thomas Herault, Jakub Kurzak, Julien Langou, Pierre Lemarinier, Hatem
Ltaief, and et al. 2011. Flexible Development of Dense Linear Algebra Algorithms
on Massively Parallel Architectures with DPLASMA. 2011 IEEE International
Symposium on Parallel and Distributed ProcessingWorkshops and Phd Forum (2011).
https://doi.org/10.1109/ipdps.2011.299

[8] George Bosilca, Aurélien Bouteiller, Anthony Danalis, Mathieu Faverge, Thomas
Hérault, and Jack Dongarra. 2013. PaRSEC: A programming paradigm exploiting
heterogeneity for enhancing scalability. Computing in Science and Engineering
99 (2013), 1. https://doi.org/10.1109/MCSE.2013.98

[9] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Thomas Herault, and Jack
Dongarra. 2012. From Serial Loops to Parallel Execution on Distributed Systems.
Springer Berlin Heidelberg, Berlin, Heidelberg, 246–257. https://doi.org/10.1007/
978-3-642-32820-6_25

[10] Javier Bueno, Judit Planas, Alejandro Duran, Rosa M. Badia, Xavier Martorell,
Eduard Ayguadé, and Jesús Labarta. 2012. Productive programming of GPU
clusters with OmpSs. Proceedings of the 2012 IEEE 26th International Parallel and
Distributed Processing Symposium, IPDPS 2012 (2012), 557–568. https://doi.org/10.
1109/IPDPS.2012.58

[11] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. 2009. A class
of parallel tiled linear algebra algorithms for multicore architectures. Parallel
Comput. 35, 1 (2009), 38 – 53. https://doi.org/10.1016/j.parco.2008.10.002

[12] M. Cosnard, E. Jeannot, and T. Yang. 1999. SLC: Symbolic scheduling for exe-
cuting parameterized task graphs on multiprocessors. In Proceedings of the 1999
International Conference on Parallel Processing. 413–421. https://doi.org/10.1109/
ICPP.1999.797429

[13] Anthony Danalis, George Bosilca, Aurelien Bouteiller, Thomas Herault, and Jack
Dongarra. 2014. PTG: An abstraction for unhindered parallelism. Proceedings of
WOLFHPC 2014: 4th International Workshop on Domain-Specific Languages and
High-Level Frameworks for High Performance Computing - Held in Conjunction
with SC 2014: The International Conference for High Performance Computing,
Networking, Stor (2014), 21–30. https://doi.org/10.1109/WOLFHPC.2014.8

[14] A. Danalis, H. Jagode, G. Bosilca, and J. Dongarra. 2015. PaRSEC in Practice:
Optimizing a Legacy Chemistry Application through Distributed Task-Based
Execution. In 2015 IEEE International Conference on Cluster Computing. 304–313.
https://doi.org/10.1109/CLUSTER.2015.50

[15] Jiri Dokulil, Martin Sandrieser, and Siegfried Benkner. 2016. Implementing
the Open Community Runtime for Shared-Memory and Distributed-Memory
Systems. Proceedings - 24th Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, PDP 2016 (2016), 364–368. https:
//doi.org/10.1109/PDP.2016.81

[16] T. Heller, H. Kaiser, and K. Iglberger. 2013. Application of the ParalleX execution
model to stencil-based problems. Computer Science - Research and Development
28, 2-3 (2013), 253–261. https://doi.org/10.1007/s00450-012-0217-1

[17] H. Jagode, A. Danalis, G. Bosilca, and J. Dongarra. 2016. Accelerating NWChem
Coupled Cluster Through Dataflow-Based Execution. Springer International Pub-
lishing, Cham, 366–376. https://doi.org/10.1007/978-3-319-32149-3_35

[18] Martin Tillenius. 2015. SuperGlue: A Shared Memory Framework Using Data
Versioning for Dependency-Aware Task-Based Parallelization. SIAM Journal on
Scientific Computing 37, 6 (2015), C617–C642. https://doi.org/10.1137/140989716

[19] Sean Treichler, Michael Bauer, and Alex Aiken. 2014. Realm: An Event-based
Low-level Runtime for Distributed Memory Architectures. In Proceedings of the
23rd International Conference on Parallel Architectures and Compilation (PACT ’14).
ACM, New York, NY, USA, 263–276. https://doi.org/10.1145/2628071.2628084

[20] Asim Yarkhan. 2012. Dynamic Task Execution on Shared and DistributedMemory
Architectures. December (2012). http://trace.tennessee.edu/utk

